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Dynamical Gauge Symmetry Breaking - DGSB

GUT ?

SU(3)C×SU(2)L×U(1)Y

SU(3)C×U(1)EM

DGBS at GUT scale

DGBS at EW scale

Understanding of DGSB : Key in Modern Physics Frontier 

SCCSC DGBS at extreme cond.

CW mechanism,  Technicolor,  Gauge-Higgs.....



Gauge Symmetry breaking 
by Non-Abelian AB effect 



U(1) Aharonov-Bohm Effect
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Purely quantum phenomenon!

・Even if no field strength(x-indep A),

    AB phase affects physics.

・Gauge-invariant quantity.

    Cannot be gauged away. It is Physics!
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changed:
m2 =

1
3
g2T 2(Nc+

1
2
NF) → m2 =

1
3
g2T 2(Nc−NF) . (1)

What happens if NF > Nc? Does m2 < 0 imply the instability of the vacuum? It turns out that 〈Ay〉 %= 0 in the true
vacuum and 〈Ay〉 %= 0 can lead to gauge symmetry breaking in non-Abelian gauge theory.

(b) Dynamics of AB phases

Consider a gauge theory on a product of d-dimensional Minkowski spacetimeMd and a circle S1 with a coordinate
y and radius R. Finite temperature QCD in 4D corresponds to the d = 3 case. The relevant quantities for the vacuum
structure are Aharonov-Bohm (AB) phases along S1:

W = Pexp
{

ig
∫

C
dyAy

}

. (2)

In SU(N) gauge theory eigenvalues ofW are given by {ei!1 , · · · ,ei!N}, "Nj=1 ! j = 0 (mod 2#). Note that constant Ay is
nontrivial. Eigenvalues ofW are gauge invariant so that they cannot be gauged away. Even if ! j’s give vanishing field
strengths, they represent physical degrees of freedom, affecting physics at the quantum level. They are AB phases. If
ei! j %= ei!k , it leads to gauge symmetry breaking.
The values of ! j’s are not at our disposal. They are dynamically determined, once the matter content in the theory

is specified. The true vacuum corresponds to the global minimum of the effective potential Veff(! j). At the tree level
Veff(! j)tree = 0, as field strengths vanish. At the quantum level it becomes nontrivial. Particles inMd consist of Kaluza-
Klein towers, the spectra of which typically take the form of mn(!H) = R−1

(

n+ !H/2#
)

(n: an integer). Here !H
represents AB phases ! j collectively. The spectrum depend on !H . The effective potential at 1-loop is

Veff(!H)1 loop ="±
1
2

∫ dd p
(2#)d "n

ln
{

p2+mn(!H)2
}

. (3)

It is remarkable that the !H -dependent part of Veff(!H) is finite, being free of divergence for any d.[1, 4, 5] As a
consequence the global minimum of Veff(!H) is unambiguously determined.

III. Gauge-Higgs unification

This opens up a new way of having dynamical gauge symmetry breaking. Dynamics of AB phases in extra
dimensions can induce gauge symmetry breaking. Four-dimensional fluctuations of these phases correspond to 4D
Higgs fields. The gauge-Higgs unification is achieved. Higgs fields are identified with a part of extra-dimensional
components of gauge potentials.

(a) SU(3) on Md×S1

Consider SU(N) gauge theory on Md × S1. Let us suppose that all fields are periodic on S1. In terms of ! j
( j = 1, · · · ,N) spectra of massless particles are given by

mn =
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
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1
R

(

n+
! j−!k
2#

)

for adjoint rep.,

1
R

(

n+
! j
2#

)

for fundamental rep.
(4)

Once the matter content is specified, Veff(!H) in (3) is evaluated. For d = 4 the effective potential is given by

Veff(! ) =C

{

− 3
N

"
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h5
(
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fund
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"
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,

SU(N) gauge theory on            .            Rd × S1

・Wilson loop in compacted direction 

1. constant eigenvalues
2. invariant under gauge transformation keeping B.C.
3. cannot be gauged away, and contributes to physics

→ Non-abelian AB effect 

cf.) Effective longitudinal gluon mass in Finite-T QCD

m2 =
1
3
g2T 2(Nc +

1
2
NF ) m2 =

1
3
g2T 2(Nc −NF )PBC:

NF > Nc means tachyonic, leading to �Ay� �= 0

A(x, y + L) = UA(x, y)U†

ψ(x, y + L) = eiβUψ(x, y)BC: y
0L

aPBC:

GSB could be !

Gross, Pisarski, Yaffe (1981)

diag[e2πiq1 , e2πiq2 , · · ·, e2πiqN ]



・Gauge-Higgs unification

spontaneous gauge symmetry breakingqi �= qj

 ・Hosotani mechanism

cf.) SO(5)×U(1) RS model

・Determined dynamically, depends on matter. 

・Spectrum                                   → massive gauge bosonm2
n =

1
L2

(n + qi − qj)
2

SO(5)×U(1) → SO(4)×U(1) → SU(2)×U(1) → U(1)
Orbifold b.c. brane dynamics Hosotani mech.

Stable Higgs: 
mH=130 GeV

e.g.)q1=q2=q3≠q4=q5,    SU(5)→SU(3)×SU(2)×U(1)  

 Nonzero q breaks gauge symmetry in (4+1)D
  → Higgs as fluctuation of Ay   (mH~O(g/L))

Hosotani (1983)

Manton (1979)  Hosotani (1983)

Agashe, Contino, Pomarol (2005)



Hosotani mechanism has been eventually studied
 in a different context.....,

although they did not focus on it.

Myers, Ogilvie (07)(08)(09)
Cossu, D’Elia(09)

Nishimura, Ogilvie(10)



・Lattice Finite-T QCD with PBC adj. matter

QCD via Large-N volume reduction ? 

Z3 confined phase survives at small L ? (volume-indep.)

・Pure Eguchi-Kawai  :  Z3 broken  
・Eguchi-Kawai w/ adj.  :  Z3 restored ?  

・Rich phase structure found !
JHEP07(2009)048
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Figure 8. Possible sketch of the phase diagram in the β-am plane and approaching the chiral
limit, obtained by means of quadratic interpolations of the critical couplings as in eq. (3.4).

case, since a chirally symmetric phase is expected anyway in the weak coupling regime (i.e.

for short enough Lc), a new exotic phase could exist in which both chiral symmetry and

center symmetry are not spontaneously broken [19, 20].

In figure 10 we show the behaviour of the chiral condensate as a function of β for

different quark masses, as obtained on the 163 × 4 lattice, while in figure 11 we show the

extrapolations of the same chiral condensate values to the chiral limit for different values

of β which cover all the possible different phases described by the Polyakov line. Also in

this case we have used quadratic extrapolations

〈ψ̄ψ〉(am) = 〈ψ̄ψ〉(0) + a1am + a2(am)2 (3.5)

which are shown as dashed lines in figure 11, together with similar extrapolations, including

also a term proportional to
√

am (continuous lines), analogous to those used in ref. [14].

Figure 11 shows that, independently of the extrapolation used, the chiral conden-

sate always extrapolates to a non-zero value, as am → 0, in all the range of β values

going at least up to β = 6.0. That means that the different transitions, corresponding

to different realization of center symmetry, do not affect chiral symmetry, which remains

spontaneously broken.

Instead at the highest value explored, β = 6.50, there is some evidence that the chiral

condensate may extrapolate to zero and chiral symmetry be restored: that would fit the

– 14 –

・Should be understood from

    Hosotani mechanism.

Cossu-D’Elia (2009)

Bhanot-Heller-Neuberger (1982)

Eguchi-Kawai (1982)

Kovtun-Unsal-Yaffe (2007)

Cossu, D’Elia (2009)

Myers-Ogilvie (2007)

QCD with PBC adj. matter is also a hot topic in the area.



Purpose

1. Understand phase structure in gauge theory   
   with PBC fermions, focusing on SGSB. 

2. Obtain useful information for phenom. models.

3. Seek other setups leading to SGSB.

Tools・One-loop effective potential

・Polyakov-loop-extended NJL



SU(N) perturbative one-loop effective potential
1. Replace τ → y,  β → L. 
2. Wilson-loop phases → zero modes

Gauge :

Fund. :

value (VEV) while Ãµ is fluctuation from it. The VEV can be replaced by

〈Ay〉 =
2π

gL
q, (2)

where q’s color structure is diag(q1, q2, ..., qN) with q1+q2+···+qN−1+qN = 0
and each component is determined as (qi)mod 1. We note that eigenvalues of
qi are invariant under all gauge transformations preserving boundary con-
ditions. Then we can easily observe spontaneous gauge symmetry breaking
from values of qi in the vacuum. For detailed argument on gauge transforma-
tion for this topic, see [9] for example. The gluon one-loop effective potential
Vg is expressed as

Vg(q) = − 2

L4π2

3∑

i,j=1

∞∑

n=1

(
1 − 1

3
δij

)cos[2nπqij]

n4
(3)

where qij = (qi − qj)mod 1 and N is the number of color degrees of freedom.
The contribution from massless fundamental quarks Vf is given by

Vf (q; Nf ,mf ) =
4Nf

L4π2

N∑
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∞∑
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n=1

cos[2πnqif ]

n4
, (6)

qif = qi+(f−1)/3 where Nf is the number of fundamental flavors. Depending
on boundary conditions, we should replace qi + 1/2 by qi + φ. For example,
the choice of φ = 0 describes quarks with periodic boundary conditions.
From here, we denote Vφ

f as effective potential of the fundamental fermion
with boundary angle φ. The contribution from massive fundamental quarks
is expressed by using the second kind of the modified Bessel function K2(x)
as

Vφ
f (q; Nf ,mf ) =

2Nfm2
f

π2L2

N∑

i=1

∞∑

n=1

K2(nmfL)

n2
cos[2πn(qi + φ)], (7)
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(mod 1)

where mf is the fundamental fermion mass. (We assume the same mass for
all flavors.) Here the second kind of the modified Bessel function Kν(x) is
defined as

Kν(x) =

√
π(x/2)ν

Γ(ν + 1/2)

∫ ∞

1

e−xt(t2 − 1)ν− 1
2 dt, (8)

where Γ(x) is the gamma function. The adjoint quark contribution Vφ
a can

be easily obtained by the following replacement,

Vφ
a (q; Na,ma) =

2Nam2
a

π2L2

N∑

i,j=1

∞∑

n=1

(
1 − 1

N
δij

)K2(nmaL)

n2
cos[2πn(qij + φ)],

(9)

where Na and ma are the number of flavors and the mass for adjoint fermions.
For the gauge theory with Nf fundamental and Na adjoint fermions with
arbitrary boundary conditions, the total one-loop effective potential is given
by

V = Vg + Vφ
f (Nf ,mf ) + Vφ

a (Na,ma). (10)

Now we consider contribution from the chiral sector. We introduce the
four-point interaction at the action level as

gS[(ψ̄ψ)2 + (ψ̄iγ5'τψ)2], (11)

where ψ is a two-flavor fermion field and gS is the effective coupling constant
with the mass dimension minus two. (We here concentrate on the two-
flavor case.) By introducing the auxiliary field σ, we show that introduction
of the above term (11) leads to addition of the following zero-temperature
contribution to the one-loop effective potential (10) [28],

Vχ = gSσ2 − dRΛ4

4π2

[(
2 +

m2
c

Λ2

) √
1 +

m2
c

Λ2
+

m4
c

Λ4
log

(
mc/Λ

1 +
√

1 + m2
c/Λ

2

)]
,

(12)
where Λ is a cutoff scale of the effective theory and mc stands for constituent
quark mass mc = m− 2gSσ. Depending on fundamental or adjoint represen-
tations, dR takes N or N2−1 respectively. In the case that we consider both
fundamental and adjoint quarks, we need two different sets of chiral sectors.

5

Gross-Pisarski-Yaffe (1981)

�Ay� =
2π

gL
diag[q1, · · ·, qN ]



SU(N) perturbative one-loop effective potential
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value (VEV) while Ãµ is fluctuation from it. The VEV can be replaced by

〈Ay〉 =
2π

gL
q, (2)

where q’s color structure is diag(q1, q2, ..., qN) with q1+q2+···+qN−1+qN = 0
and each component is determined as (qi)mod 1. We note that eigenvalues of
qi are invariant under all gauge transformations preserving boundary con-
ditions. Then we can easily observe spontaneous gauge symmetry breaking
from values of qi in the vacuum. For detailed argument on gauge transforma-
tion for this topic, see [9] for example. The gluon one-loop effective potential
Vg is expressed as

Vg(q) = − 2

L4π2

N∑

i,j=1

∞∑

n=1

(
1 − 1

N
δij

)cos[2nπqij]

n4
(3)

where qij = (qi − qj)mod 1 and N is the number of color degrees of freedom.
The contribution from massless fundamental quarks Vf is given by

Vf (q; Nf ,mf ) =
4Nf

L4π2

N∑

i=1

∞∑

n=1

cos[2πn(qi + 1/2)]

n4
, (4)

V0
a = +

4

L4π2

3∑

i,j=1

∞∑

n=1

(
1 − 1

3
δij

)cos[2πnqij]

n4
, (5)

VFT
f = +

4

L4π2

3∑

i

3∑

f

∞∑

n=1

cos[2πnqif ]

n4
, (6)

qif = qi+(f−1)/3 where Nf is the number of fundamental flavors. Depending
on boundary conditions, we should replace qi + 1/2 by qi + φ. For example,
the choice of φ = 0 describes quarks with periodic boundary conditions.
From here, we denote Vφ

f as effective potential of the fundamental fermion
with boundary angle φ. The contribution from massive fundamental quarks
is expressed by using the second kind of the modified Bessel function K2(x)
as

Vφ
f (q; Nf ,mf ) =

2Nfm2
f

π2L2

N∑

i=1

∞∑

n=1

K2(nmfL)

n2
cos[2πn(qi + φ)], (7)

4

with
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flavor case.) By introducing the auxiliary field σ, we show that introduction
of the above term (11) leads to addition of the following zero-temperature
contribution to the one-loop effective potential (10) [28],

Vχ = gSσ2 − dRΛ4

4π2

[(
2 +

m2
c

Λ2

) √
1 +

m2
c

Λ2
+

m4
c

Λ4
log

(
mc/Λ

1 +
√

1 + m2
c/Λ

2

)]
,

(12)
where Λ is a cutoff scale of the effective theory and mc stands for constituent
quark mass mc = m− 2gSσ. Depending on fundamental or adjoint represen-
tations, dR takes N or N2−1 respectively. In the case that we consider both
fundamental and adjoint quarks, we need two different sets of chiral sectors.
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1. Replace τ → y,  β → L. 
2. Wilson-loop phases → zero modes

Gross-Pisarski-Yaffe (1981)

�Ay� =
2π

gL
diag[q1, · · ·, qN ]

Adj. :



How to observe GSB
Look for global minima in effective potential

Figure 19: The contour plot of one-loop effective potential for pure SU(3)
gauge theory, VgL4 as a function of q1 and q2. Thicker region stands for
deeper region of the effective potential.

Figure 20: The contour plot of one-loop effective potential for R3×S1 SU(3)
gauge theory with one massless fundamental fermion with anti-periodic
boundary condition ((Nf , Na) = (1, 0) with aPBC) (Vg + V1/2

f )L4.
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Fig. 10: Schematic distribution plot of Polyakov loop Φ as a function
of Re Φ and Im Φ for SU(3) gauge theory on R3×S1 with N3 = 40
FTBC fermions. Solid circles (deconfined phase) and open circles
(C-broken phase).
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Fig. 11: L−1-m phase diagram for SU(3) gauge theory on R3 ×S1

with N3 = 40 FTBC fermions based on one-loop effective potential.
D stands for SU(3) deconfined phase and GB for SU(2) × U(1)
gauge-broken phase. In the gauge-broken phase, charge conjugation
invariance is also spontaneously broken.

V. SUMMARY

In summary,

In Sec. IV, we investigated dynamical breaking of SU(3)
gauge symmetry in FTBC models. We found that, in the case
with large NF , SU(3) is broken to SU(2) × U(1) as with
the split phase in the adjoint-PB theory. The significant differ-
ence is that the minima in the effective potential have charge-
conjugation pairs in FTBC case as shown Fig. 10: We thus
consider the charge-conjugation invariance is also broken in
this phase. It is reasonable since FTBC can be interpreted
as a special manner of introducing imaginary chemical po-
tential so as to keep charge conjugation as well as Z3 cen-
ter. Although the large NF means asymptotic-non-freedom,
we consider our result suggests another class of Gauge-Higgs
unification models with dynamical gauge symmetry breaking.

Acknowledgments

The authors thank A. Nakamura, T. Saito and K. Na-
gata for useful discussions. H.K. also thanks M. Imachi, H.
Yoneyama, H. Aoki and M. Tachibana for useful discussions.
T.S. is supported by JSPS.

[1] A. M. Polyakov, Phys. Lett. 72B, 477 (1978).
[2] H. Kouno, Y. Sakai, T. Makiyama, K. Tokunaga, T. Sasaki, and

M. Yahiro, arXiv:1202.5584 [hep-ph](2012).
[3] Y. Sakai, H. Kouno, T. Sasaki, and M. Yahiro, arXiv:1204.0228

[hep-ph](2012).
[4] P. N. Meisinger, and M. C. Ogilvie, Phys. Lett. B 379, 163

(1996).
[5] A. Dumitru, and R. D. Pisarski, Phys. Rev. D 66, 096003

(2002); A. Dumitru, Y. Hatta, J. Lenaghan, K. Orginos, and
R. D. Pisarski, Phys. Rev. D 70, 034511 (2004); A. Dumitru,
R. D. Pisarski, and D. Zschiesche, Phys. Rev. D 72, 065008
(2005).

[6] K. Fukushima, Phys. Lett. B 591, 277 (2004)..
[7] C. Ratti, M. A. Thaler, and W. Weise, Phys. Rev. D 73, 014019
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Figure 22: The contour plot of one-loop effective potential for R3×S1 SU(3)
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(3) aPBC adjoint

Figure 21: The contour plot of one-loop effective potential for R3×S1 SU(3)
gauge theory with one fundamental fermion with periodic boundary condition
((Nf , Na) = (1, 0) with PBC) (Vg + V0

f )L4.
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Fig. 11: L−1-m phase diagram for SU(3) gauge theory on R3 ×S1

with N3 = 40 FTBC fermions based on one-loop effective potential.
D stands for SU(3) deconfined phase and GB for SU(2) × U(1)
gauge-broken phase. In the gauge-broken phase, charge conjugation
invariance is also spontaneously broken.

V. SUMMARY

In summary,

In Sec. IV, we investigated dynamical breaking of SU(3)
gauge symmetry in FTBC models. We found that, in the case
with large NF , SU(3) is broken to SU(2) × U(1) as with
the split phase in the adjoint-PB theory. The significant differ-
ence is that the minima in the effective potential have charge-
conjugation pairs in FTBC case as shown Fig. 10: We thus
consider the charge-conjugation invariance is also broken in
this phase. It is reasonable since FTBC can be interpreted
as a special manner of introducing imaginary chemical po-
tential so as to keep charge conjugation as well as Z3 cen-
ter. Although the large NF means asymptotic-non-freedom,
we consider our result suggests another class of Gauge-Higgs
unification models with dynamical gauge symmetry breaking.
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with N3 = 40 FTBC fermions based on one-loop effective potential.
D stands for SU(3) deconfined phase and GB for SU(2) × U(1)
gauge-broken phase. In the gauge-broken phase, charge conjugation
invariance is also spontaneously broken.

V. SUMMARY

In summary,
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with large NF , SU(3) is broken to SU(2) × U(1) as with
the split phase in the adjoint-PB theory. The significant differ-
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conjugation pairs in FTBC case as shown Fig. 10: We thus
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this phase. It is reasonable since FTBC can be interpreted
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Fig. 11: L−1-m phase diagram for SU(3) gauge theory on R3 ×S1

with N3 = 40 FTBC fermions based on one-loop effective potential.
D stands for SU(3) deconfined phase and GB for SU(2) × U(1)
gauge-broken phase. In the gauge-broken phase, charge conjugation
invariance is also spontaneously broken.
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with large NF , SU(3) is broken to SU(2) × U(1) as with
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Figure 1: The one-loop effective potential of SU(3) gauge theory on R3 ×S1

with one adjoint fermion with PBC [Vg + V0
a(Na = 1,ma = 0)]L4. (Right)

The contour plot as a function of q1 and q2. Thicker region stands for deeper
region of the potential. (Left) The effective potential as a function of q1 with
q2 = 0. The global minima are located at (q1, q2) = (±1/3, 0).

ing. We consider (Nf , Na) = (0, 1) with PBC. We note that this the-
ory has exact center symmetry, and all the phases, even the gauge-broken
phase, should reflect this symmetry. Figure 1 shows the effective potential
[Vg + V0

a ]L4. The left contour plot is obviously different from the gauge-
symmetric cases. Careful search shows that the minima are located at
(q1, q2) = (0, 1/3), (1/3, 0), (−1/3, 1/3), (−1/3, 0), (0,−1/3), (1/3,−1/3).
It means the vacua are given by permutations of (q1, q2, q3) = (0, 1/3,−1/3),
and SU(3) gauge symmetry is broken into U(1) × U(1). This is the famous
result, known as the Hosotani mechanism, where the Aharonov-Bohm effect
in the compacted dimension nontrivially breaks gauge symmetry [4, 5, 9, 10].
We note that this situation is sometimes called “re-confined phase” [29] since
the color fundamental trace of the Polyakov loop Φ ≡ TrF P becomes zero.

To study the phase diagram, we introduce nonzero quark mass. Figure 2
shows the effective potential [Vg + V0

a(Na,ma)]L4 as a function of q1 with
q2 = 0 for mL = 1.2, 1.6, 2.0 and 3.0 from left to right panels (m ≡ ma).
It is clearly seen that there is the first-order phase transition in the vicinity
of mL = 1.6. This is a transition between the re-confined phase and the
other gauge-broken phase, which we call the “split phase” [29]. The contour
plots for mL = 1.6 and mL = 1.8 are shown in Fig. 3. The mL = 1.8 case
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Fig. 11: L−1-m phase diagram for SU(3) gauge theory on R3 ×S1

with N3 = 40 FTBC fermions based on one-loop effective potential.
D stands for SU(3) deconfined phase and GB for SU(2) × U(1)
gauge-broken phase. In the gauge-broken phase, charge conjugation
invariance is also spontaneously broken.

V. SUMMARY

In summary,

In Sec. IV, we investigated dynamical breaking of SU(3)
gauge symmetry in FTBC models. We found that, in the case
with large NF , SU(3) is broken to SU(2) × U(1) as with
the split phase in the adjoint-PB theory. The significant differ-
ence is that the minima in the effective potential have charge-
conjugation pairs in FTBC case as shown Fig. 10: We thus
consider the charge-conjugation invariance is also broken in
this phase. It is reasonable since FTBC can be interpreted
as a special manner of introducing imaginary chemical po-
tential so as to keep charge conjugation as well as Z3 cen-
ter. Although the large NF means asymptotic-non-freedom,
we consider our result suggests another class of Gauge-Higgs
unification models with dynamical gauge symmetry breaking.
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Figure 1: The one-loop effective potential of SU(3) gauge theory on R3 ×S1

with one adjoint fermion with PBC [Vg + V0
a(Na = 1,ma = 0)]L4. (Right)

The contour plot as a function of q1 and q2. Thicker region stands for deeper
region of the potential. (Left) The effective potential as a function of q1 with
q2 = 0. The global minima are located at (q1, q2) = (±1/3, 0).

ing. We consider (Nf , Na) = (0, 1) with PBC. We note that this the-
ory has exact center symmetry, and all the phases, even the gauge-broken
phase, should reflect this symmetry. Figure 1 shows the effective potential
[Vg + V0

a ]L4. The left contour plot is obviously different from the gauge-
symmetric cases. Careful search shows that the minima are located at
(q1, q2) = (0, 1/3), (1/3, 0), (−1/3, 1/3), (−1/3, 0), (0,−1/3), (1/3,−1/3).
It means the vacua are given by permutations of (q1, q2, q3) = (0, 1/3,−1/3),
and SU(3) gauge symmetry is broken into U(1) × U(1). This is the famous
result, known as the Hosotani mechanism, where the Aharonov-Bohm effect
in the compacted dimension nontrivially breaks gauge symmetry [4, 5, 9, 10].
We note that this situation is sometimes called “re-confined phase” [29] since
the color fundamental trace of the Polyakov loop Φ ≡ TrF P becomes zero.

To study the phase diagram, we introduce nonzero quark mass. Figure 2
shows the effective potential [Vg + V0

a(Na,ma)]L4 as a function of q1 with
q2 = 0 for mL = 1.2, 1.6, 2.0 and 3.0 from left to right panels (m ≡ ma).
It is clearly seen that there is the first-order phase transition in the vicinity
of mL = 1.6. This is a transition between the re-confined phase and the
other gauge-broken phase, which we call the “split phase” [29]. The contour
plots for mL = 1.6 and mL = 1.8 are shown in Fig. 3. The mL = 1.8 case
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Figure 2: The one-loop effective potential of SU(3) gauge theory on R3 ×S1

with one PBC adjoint quark as a function of q1 with q2 = 0 [Vg + V0
a ]L4, for

mL = 1.2 (reconfined), 1.6 (reconfined↔split), 2.0 (split↔deconfined) and
3.0 (deconfined).

Figure 3: Contour plot of the one-loop effective potential of SU(3) gauge
theory on R3×S1 with one PBC adjoint quark [(Vg)pert+V0

a ]L4, for mL = 1.6
and 1.8 (SU(2)×U(1) split phase) as a function of q1 and q2. Thicker region
indicates deeper region of the potential.
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large m 

7

Fig. 7: Contour plot of VfL4 with mL = 0. Result with FTBC-PB.
q3 is given by −q1 − q2.

Fig. 8: Contour plot of VgL4. q3 is given by −q1 − q2.

two Z3 sets

(q1, q2, q3)1 =(α/9,α/9,−2α/9),
((α + 3)/9, (α + 3)/9, (3 − 2α)/9),
(−(3 − α)/9,−(3 − α)/9, (6 − 2α)/9)

(37)
(q1, q2, q3)2 = − (α/9,α/9,−2α/9),

− ((α + 3)/9, (α + 3)/9, (3 − 2α)/9),
− (−(3 − α)/9,−(3 − α)/9, (6 − 2α)/9),

(38)

where α depends on NF and mL within 0 < α ≤ 1. In
NF → ∞ limit, α reaches 1. Here we do not manifest their
permutation triplets. In this case, SU(3) gauge symmetry is
broken to SU(2)×U(1).

These two sets of vacua (37) and (38) have a relation as

(q1, q2, q3)1 = −(q1, q2, q3)2, (39)

which can be interpreted as charge conjugation invariance
(Aµ → −A∗

µ, ImΦ → −ImΦ). This charge conjugation
symmetry is also spontaneously broken in this phase. Fur-

Fig. 9: Contour plot of [Vg + Vf ]L4 with N3 = 40 FTBC fermions
, for the SU(3) deconfined phase (top) and the SU(2) × U(1) C-
broken phase (bottom).

thermore, since Φ &= 0 in this phase, Z3 symmetry is spon-
taneously broken. Distribution plot of the Polyakov loop
Φ ≡ Tre2iπqi and phase diagram are depicted in Fig. 10 and
in Fig. 11,respectively.

We comment on asymptotic-non-freedom and renormaliz-
ability in SU(3) gauge theory with large Nf . In the case with
NF > 30 (Nf > 90), the theory loses asymptotic-freedom
and is expected to become non-renormalizable. We how-
ever note that dynamical gauge symmetry breaking due to the
Hosotani mechanism can be brought about also in the asymp-
totic non-free theory as QED or five-dimensional gauge theo-
ries. This is because the mechanism is based on the Aharonov-
Bohm effect in the compactified direction. We thus consider
that our result on gauge symmetry breaking is still valid al-
though we should regard our large-flavor theory on R3×S1 as
cutoff theory. We also note that we have no consensus on how
behavior of beta function depends on the number of flavors in
compactified gauge theory with special boundary conditions
as FTBC. Intensive study should be devoted to this topic.

We consider that our argument can carry over to the
five-dimensional gauge theory, which is expected to be
asymptotic-non-free in the first place. FTBC may lead to a
new class of Gauge-Higgs unification models in five dimen-
sions.
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Fig. 10: Schematic distribution plot of Polyakov loop Φ as a function
of Re Φ and Im Φ for SU(3) gauge theory on R3×S1 with N3 = 40
FTBC fermions. Solid circles (deconfined phase) and open circles
(C-broken phase).
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Fig. 11: L−1-m phase diagram for SU(3) gauge theory on R3 ×S1

with N3 = 40 FTBC fermions based on one-loop effective potential.
D stands for SU(3) deconfined phase and GB for SU(2) × U(1)
gauge-broken phase. In the gauge-broken phase, charge conjugation
invariance is also spontaneously broken.

V. SUMMARY

In summary,

In Sec. IV, we investigated dynamical breaking of SU(3)
gauge symmetry in FTBC models. We found that, in the case
with large NF , SU(3) is broken to SU(2) × U(1) as with
the split phase in the adjoint-PB theory. The significant differ-
ence is that the minima in the effective potential have charge-
conjugation pairs in FTBC case as shown Fig. 10: We thus
consider the charge-conjugation invariance is also broken in
this phase. It is reasonable since FTBC can be interpreted
as a special manner of introducing imaginary chemical po-
tential so as to keep charge conjugation as well as Z3 cen-
ter. Although the large NF means asymptotic-non-freedom,
we consider our result suggests another class of Gauge-Higgs
unification models with dynamical gauge symmetry breaking.
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Figure 4: L−1-m phase diagram for SU(3) gauge theory on R3 × S1 with
one PBC adjoint quark based on one-loop effective potential. D stands for
“deconfined (SU(3))”, S for “split (SU(2) × U(1))” and R for “re-confined
(U(1) × U(1))” phases. Phase transitions are first-order.

ReΦ

Im Φ

Figure 5: Schematic distribution plot of Polyakov loop Φ as a function of
Re Φ and Im Φ for SU(3) gauge theory on R3 × S1 with one PBC adjoint
quark.

12

!

"

#

$ % & ' ( )$
$

*

)$

)*

%$

)!+

,
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“deconfined (SU(3))”, S for “split (SU(2) × U(1))” and R for “re-confined
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Figure 5: Schematic distribution plot of Polyakov loop Φ as a function of
Re Φ and Im Φ for SU(3) gauge theory on R3 × S1 with one PBC adjoint
quark.
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Phase diagram & Polyakov-loop

SU(3)
SU(2)×U(1)

U(1)×U(1)

SU(3)          → “Deconfined”
SU(2)×U(1) → “Split” (Phenomenologically most desirable)
U(1)×U(1)   → “Re-confined” (zero Polyakov-loop Φ=0)

SU(2)×U(1) phase can be enlarged?

cf.) <Φ>=0 in confined phase is due to large    
     fluctuation in strong-coupling regime. 

Z3

→yes! By fund. matters



SU(3) with adj. & fund. with PBC
diagram for the same case. We emphasize that the split phase gets larger by
introducing PBC fundamental quarks, compared to Fig. 4. It is because the
center symmetry breaking chooses (q1, q2, q3) = (0, 0.5, 0.5) and its permuta-
tions as true vacua among all the possible minima Fig. 9, and makes it more
stable than the center-symmetric case in Fig. 5.

ReΦ

Im Φ

Figure 9: Schematic distribution plot of Polyakov loop Φ for SU(3) gauge
theory on R3×S1 with one PBC adjoint and one PBC massless fundamental
quarks (Nf , Na) = (1, 1). Points painted over stand for vacua in this case. Z3

symmetry is broken, and some of the three minima are chosen as true vacua
in deconfined and split phase. The Polyakov loop Φ in the pseudo-reconfined
phase (PC) takes a nonzero and negative value.

To look into the details of pseudo-reconfined phase and the phase transi-
tion to the split phase, we depict the expanded effective potential near the
global minima as a function of q1 with q2 = 0 in Fig. 11. The left panel shows
the result for the massless adjoint quark (ma = m = 0), which corresponds
to the pseudo-confined phase. The minimum is not located at (q1, q2) =
(0.5, 0)(split case) nor at (q1, q2) = (1/3, 0)(re-confined case). In the pseudo-
confined phase we totally have six minima for q1 and q2 as (q1, q2) ∼ (0, 0.4),
(0.4, 0), (−0.4, 0.4), (−0.4, 0), (0,−0.4), (0.4,−0.4), which means that the
vacua are given by the permutation of (q1, q2, q3) ∼ (0, 0.4,−0.4). The right
panel shows the first-order phase transition between pseudo-confined and
split phases. Since the potential barrier at the phase transition is quite low,
the fluctuation could break down clear phase transition. For the cases with
(Nf , Na) = (1, 2) and (Nf , Na) = (1, 3) where the flavor of adjoint quarks is
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Figure 10: Phase diagram for R3 × S1 SU(3) gauge theory with one PBC
adjoint and one massless PBC fundamental quarks (Nf , Na) = (1, 1) based
on the one-loop effective potential. m is the adjoint quark mass m = ma and
L−1 is the inverse of the compacted size. PC stands for “pseudo-reconfined”
phase.

larger than that of fundamental quarks, the minima of the potential in the
pseudo-reconfined phase becomes deeper, and we can observe the first-order
phase transition more distinctly.

The chiral sector can be introduced by extending to (Nf , Na) = (2, 2). In
this case we have two chiral sectors for fundamental and adjoint quarks, and
we have arbitrariness how to implement four-point interactions and choose
relative parameters. For example, we may consider the following forms of
the four-point interactions.

(gS)f [(ψ̄fψf )
2 + (ψ̄f iγ5#τψf )

2] + (gS)a[(ψ̄aψa)
2 + (ψ̄aiγ5#τψa)

2]

+ (gS)fa[{(ψ̄fψf ) + (ψ̄f iγ5#τψf )}{(ψ̄aψa) + (ψ̄aiγ5#τψa)}],
(22)

where ψf and ψa stand for fundamental and adjoint quark fields, and (gS)f , (gS)a, (gS)fa

stand for fundamental, adjoint and mixing effective coupling. Even if we fix
a form of the four-point interactions, we still have no criterion on how to set
the parameters since there is no lattice study on this case either for aPBC
or PBC. Thus we just comment on general aspects of the chiral properties
in this case. For (Nf , Na) = (2, 0) with PBC, we know that we have the
chiral phase transition as with that of aPBC as shown in Fig. 6. If this phase
transition persists in the (Nf , Nf ) = (2, 2) case with PBC, chiral phase tran-
sition of the adjoint quarks could coincide with that of the fundamental chiral
condensate [74, 75]. In such a scenario, the chiral phase diagram could be
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Figure 2. Same as in figure 1, but for am = 0.02.

of a split (skewed) phase is weaker at the smallest quark mass explored, am = 0.01. Typical

time histories for the real and imaginary parts of L(3) are shown in figure 4, in particular

for the confined and deconfined phase at the lowest quark mass explored, am = 0.01.

It is interesting to notice that in each different phase the Polyakov line modulus has

a very small dependence on the quark mass, much weaker than what observed in the case

of finite temperature QCD(Adj) (see for instance results reported in ref. [14, 15]). In the

present case the main effect of changing the quark mass seems that of moving the location

of the phase transitions.

Locations of the critical couplings as a function of the bare quark mass are reported

in table 1. Regarding the order of the phase transitions, we have indications, coming from

abrupt jumps of observables or presence of metastabilities, that they are all first order, at

least for am ≥ 0.05. For the smallest quark masses, am = 0.01 and am = 0.02, transitions

look smoother. A deeper investigation and a finite size scaling analysis would be needed

to reach a definite conclusion: that goes beyond our present purposes. However we notice

that true phase transitions (continuous or discontinuous) should be found at points where

the realization of the (exact) center symmetry changes.

Let us now discuss our results. The confining behaviour observed at large Lc (low

β) is in agreement with the usual infinite volume behaviour of QCD(Adj). The confining

behaviour observed at small Lc (high β) is in agreement with the prediction of the one-loop

– 7 –

Re-interpretation of adj. lattice results Cossu, D’Elia (2009)
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Chiral properties

・Chiral model with PBC adjoint 2 flavors

This potential is valid for the weak-coupling region because it is basically
based on the perturbative calculations, and chiral properties we obtain from
it is at least valid for a small L region. We note that the cutoff scale Λ and
the effective-coupling gS should be chosen to reproduce the known results.
We note that this total effective potential is identical to that of the PNJL
model [55] adopting the one-loop potential as the gluon contribution,

LPNJL = ψ̄(γµDµ + m)ψ − gS[(ψ̄ψ)2 + (ψ̄iγ5#τψ)2] + Vg, (14)

with Dj = ∂j, D4 = ∂4 + iA4. We thus call the total effective potential (13)
PNJL or PNJL-based effective potential.

We here comment on the PNJL model. In the standard use of the PNJL
model, the gluonic contribution Vg is replaced by the “non-perturbatively”-
deformed ones: in order to mimic the confinement/deconfinement phase
transition in the study on QCD phase diagram,, the one-loop gluon poten-
tial should be replaced by some nonperturbative versions. We have sev-
eral schemes including the ones adopted in Ref. [27, 69, 70, 28], the one-
loop ansatz used in Ref. [71] and the strong-coupling lattice potential in
Ref. [55, 58]. In all the modifications able to reproduce the phase transi-
tion, however, the SU(N) gauge symmetry is explicitly broken due to the
mass-dimension parameters. Since the non-perturbative modification does
not suit our purpose of classifying the gauge-broken phases, we will mainly
adopt one-loop effective potential as the gluonic contribution in our PNJL
model and just discuss how the phase diagram is changed by the deformation
in the next section.

2.2 SU(N) in five dimensions

In the five-dimensional case, most of the setup is parallel to the four-dimensional
case except for difference of mass dimensions of fields and parameters. We
here show the one-loop effective potential of gluon and quarks below. The
five-dimensional one-loop effective potential in the gluon sector is given by

Vg = − 9

4π2L5

N∑

i,j=1

∞∑

n=1

(
1 − 1

N
δij

)cos(2πnqij)

n5
, (15)

6

V(q1, q2, σ) = Vg + VF + Vχ

Chiral symmetry restored slowly for PBC adj.

and (Nf , Na) = (0, 2) with aPBC. We depict behavior of the constituent
mass for these cases in Fig. 6, where the chiral phase transition takes place
at some point for the three cases. The parameters are chosen so as to have
the correct critical temperatures in finite-temperature SU(3) gauge theory
with aPBC quarks [72, 73], Λ = 0.63 GeV and gSΛ2 = 2.19 for fundamental
quarks and Λ = 23.22 GeV and gSΛ2 = 0.63 for adjoint quarks [28].

We are now convinced that the model can work to study chiral properties,
and we go on to the main topic, (Nf , Na) = (0, 2) with PBC. We calculate
the PNJL effective potential in Eq. (13) and search for the vacua for q1, q2

and σ. We depict the phase diagram for this case in Fig. 7. Due to nonzero
constituent mass, the whole phase diagram is shifted, and we have phase
transitions even for a ma = 0 massless case. We also note that the critical
lines are curved due to the dimensionful parameters introduced. Although
our analysis is valid only for the weak-coupling regime, the phase diagram
is qualitatively consistent with that of the lattice simulations [25, 29] except
that ours have no confinement/deconfinement phase transition.
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Figure 6: Constituent mass mc as a function of L−1 for (Nf , Na) = (2, 0)
with aPBC, (Nf , Na) = (2, 0) with PBC, (Nf , Na) = (0, 2) with aPBC and
(Nf , Na) = (2, 0) with PBC with the bare mass fixed as m = 0 GeV. We
choose the parameter set as Λ = 0.63 GeV and gSΛ2 = 2.19 for fundamental
cases and Λ = 23.22 GeV and gSΛ2 = 0.63 for adjoint cases.

To look into chiral properties, we simultaneously depict the real part of
VEV of Polyakov loop Φ and the constituent mass mc as a function of L−1
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the PNJL effective potential in Eq. (13) and search for the vacua for q1, q2

and σ. We depict the phase diagram for this case in Fig. 7. Due to nonzero
constituent mass, the whole phase diagram is shifted, and we have phase
transitions even for a ma = 0 massless case. We also note that the critical
lines are curved due to the dimensionful parameters introduced. Although
our analysis is valid only for the weak-coupling regime, the phase diagram
is qualitatively consistent with that of the lattice simulations [25, 29] except
that ours have no confinement/deconfinement phase transition.
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Figure 6: Constituent mass mc as a function of L−1 for (Nf , Na) = (2, 0)
with aPBC, (Nf , Na) = (2, 0) with PBC, (Nf , Na) = (0, 2) with aPBC and
(Nf , Na) = (2, 0) with PBC with the bare mass fixed as m = 0 GeV. We
choose the parameter set as Λ = 0.63 GeV and gSΛ2 = 2.19 for fundamental
cases and Λ = 23.22 GeV and gSΛ2 = 0.63 for adjoint cases.

To look into chiral properties, we simultaneously depict the real part of
VEV of Polyakov loop Φ and the constituent mass mc as a function of L−1
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Figure 8: VEV of Polyakov loop Φ (blue dashed) with q2 = 0 and the
constituent mass mc (red solid) as a function of L−1 with the bare mass
fixed as m = 0 GeV (left) and m = 1 GeV (right). The constituent mass
is normalized as mc(L−1)/mc(L−1 = 0). The result indicates that the chiral
symmetry is gradually restored without the clear phase transition.

nected with the re-confined phase through the small mass region. This result
clearly shows that the gauge symmetry is broken as SU(3) → U(1) × U(1)
at zero-temperature or infinite-L. We note that the similar result with the
same deformation in the gluon potential is shown in Ref. [28], where it is
argued that the unified confined phase implies the volume-independece of
the confined phase structure. This topic is beyond our scope, and we will
not discuss it anymore.

We next consider (Nf , Na) = (1, 1) with PBC. We concentrate on the
case with a massless fundamental quark, and the potential is given by Vg +
Vφ

f (Nf = 1,mf = 0) + Vφ
a (Na = 1,ma = m). In this case, since the fun-

damental quark breaks the Z3 center symmetry, the minima at ReΦ < 0
become true vacua in the deconfined and split phases as shown in Fig. 9.
(Fundamental matter with PBC moves the vacua to ReΦ < 0 direction.) In
addition, we have no exact re-confiend phase since Φ = 0 vacuum cannot
be chosen because of the center symmetry breaking in Fig. 9. We term this
unusual phase as “pseudo-reconfined phase”, where the SU(3) is broken to
U(1) × U(1) and Φ takes a nonzero and negative value. The existence of
this phase is consistent with the research on flavor-number dependence of
gauge-symmetry-broken manners in Ref. [8]. In Fig. 10, we depict the phase
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with the bare mass fixed as m = 0 GeV and m = 1 GeV in Fig. 8. We here
normalize the constituent mass as mc(L1)/mc(L−1 = 0). It is notable that
chiral condensate, or equivalently, constituent quark mass does not undergo
a clear transition even for large values of L−1, and it gradually decreases.
We thus have no clear chiral restoration transition while chiral symmetry is
gradually restored in this theory. This result and the standard-PNJL result in
[28] are consistent with those of the lattice simulation [29], which argues that
the chiral restoration at weak coupling should occur at a quite small value of
the compacted size L. The other notable point is that the chiral condensate
undergoes quite small transitions coinciding with the deconfined/split and
split/re-confined phase transitions. (It can be seen better in Fig. 6 or the
right panel for m = 1 GeV in Fig. 8.) This kind of the transition propagation
is well studied in [74, 75], but they may be too small to be observed in the
lattice simulations.
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m
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D S

R

Figure 7: L−1-m phase diagram for SU(3) gauge theory on R3×S1 with two-
flavor PBC adjoint quarks (Nf , Na) = (0, 2) based on the PNJL-type effective
potential. D stands for “deconfined”, S for “split” and R for “re-confined”
phases. Critical lines are first-order.

Let us briefly comment on non-perturbative deformation of the gluon po-
tential discussed in Sec. 2. We show one of the examples of the deformations
in Eq. (23) in Appendix. A, where introduction of the mass-dimension pa-
rameter M is not appropriate for the present purpose. Indeed, if we introduce
this deformation (M = 596 MeV), the phase diagram in Fig. 4 is midified as
Fig. 23. Here the confined phase emerges at small L−1 region, but it is con-
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・Qualitatively unchanged, but the scaling disappears.
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5D SU(N) one-loop effective potential
1. Replace τ → y,  β → L. 
2. Wilson-loop phases → zero modes

Gauge :

Fund. :

Adj. :

with

value (VEV) while Ãµ is fluctuation from it. The VEV can be replaced by

〈Ay〉 =
2π

gL
q, (2)

where q’s color structure is diag(q1, q2, ..., qN) with q1+q2+···+qN−1+qN = 0
and each component is determined as (qi)mod 1. We note that eigenvalues of
qi are invariant under all gauge transformations preserving boundary con-
ditions. Then we can easily observe spontaneous gauge symmetry breaking
from values of qi in the vacuum. For detailed argument on gauge transforma-
tion for this topic, see [9] for example. The gluon one-loop effective potential
Vg is expressed as

Vg(q) = − 2

L4π2

N∑

i,j=1

∞∑

n=1

(
1 − 1

N
δij

)cos[2nπqij]

n4
(3)

where qij = (qi − qj)mod 1 and N is the number of color degrees of freedom.
The contribution from massless fundamental quarks Vf is given by

Vf (q; Nf ,mf ) =
4Nf

L4π2

N∑

i=1

∞∑

n=1

cos[2πn(qi + 1/2)]

n4
, (4)

V0
a = +

4

L4π2

3∑

i,j=1

∞∑

n=1

(
1 − 1

3
δij

)cos[2πnqij]

n4
, (5)

VFT
f = +

4

L4π2

3∑

i

3∑

f

∞∑

n=1

cos[2πnqif ]

n4
, (6)

qif = qi+(f−1)/3 where Nf is the number of fundamental flavors. Depending
on boundary conditions, we should replace qi + 1/2 by qi + φ. For example,
the choice of φ = 0 describes quarks with periodic boundary conditions.
From here, we denote Vφ

f as effective potential of the fundamental fermion
with boundary angle φ. The contribution from massive fundamental quarks
is expressed by using the second kind of the modified Bessel function K2(x)
as

Vφ
f (q; Nf ,mf ) =

2Nfm2
f

π2L2

N∑

i=1

∞∑

n=1

K2(nmfL)

n2
cos[2πn(qi + φ)], (7)

4

(mod 1)

�Ay� =
2π

gL
diag[q1, · · ·, qN ]

The total effective potential combined with the chiral contribution is then
given by

Vtotal = V + Vχ. (13)

This potential is valid for the weak-coupling region because it is basically
based on the perturbative calculations, and chiral properties we obtain from
it is at least valid for a small L region. We note that the cutoff scale Λ and
the effective-coupling gS should be chosen to reproduce the known results.
We note that this total effective potential is identical to that of the PNJL
model [55] adopting the one-loop potential as the gluon contribution,

LPNJL = ψ̄(γµDµ + m)ψ − gS[(ψ̄ψ)2 + (ψ̄iγ5#τψ)2] + Vg, (14)

with Dj = ∂j, D4 = ∂4 + iA4. We thus call the total effective potential (13)
PNJL or PNJL-based effective potential.

We here comment on the PNJL model. In the standard use of the PNJL
model, the gluonic contribution Vg is replaced by the “non-perturbatively”-
deformed ones: in order to mimic the confinement/deconfinement phase
transition in the study on QCD phase diagram,, the one-loop gluon poten-
tial should be replaced by some nonperturbative versions. We have sev-
eral schemes including the ones adopted in Ref. [27, 69, 70, 28], the one-
loop ansatz used in Ref. [71] and the strong-coupling lattice potential in
Ref. [55, 58]. In all the modifications able to reproduce the phase transi-
tion, however, the SU(N) gauge symmetry is explicitly broken due to the
mass-dimension parameters. Since the non-perturbative modification does
not suit our purpose of classifying the gauge-broken phases, we will mainly
adopt one-loop effective potential as the gluonic contribution in our PNJL
model and just discuss how the phase diagram is changed by the deformation
in the next section.

2.2 SU(N) in five dimensions

In the five-dimensional case, most of the setup is parallel to the four-dimensional
case except for difference of mass dimensions of fields and parameters. We
here show the one-loop effective potential of gluon and quarks below. The
five-dimensional one-loop effective potential in the gluon sector is given by

Vg = − 9

4π2L5

N∑

i,j=1

∞∑

n=1

(
1 − 1

N
δij

)cos(2πnqij)

n5
, (15)

6

which has 1/L5 dimension. The effective potential for massless fermions in
this case is given by

V1/2
f = −2T

∫
dk

8π2
k3

[
ln

(
1 + e−L|k|+2iπqij

)
+ ln

(
1 + e−L|k|−2iπqij

)]

=
3

L5π2

∞∑

n=1

cos[2πn(qij + 1/2)]

n5
. (16)

The effective potential of the massless fundamental and adjoint fermions with
arbitrary boundary condition is expressed as

Vφ
f =

3Nf

π2L5

N∑

i=1

∞∑

n=1

cos[2πn(qi + φ)]

n5
, (17)

Vφ
a =

3Na

π2L5

N∑

i,j=1

∞∑

n=1

(
1 − 1

N
δij

)cos[2πn(qij + φ)]

n5
. (18)

For the massive fermion, we should replace |k| by Ep =
√

p2 + m2 in
Eq. (16). To evaluate the integration, we should expand the logarithm in
the same way as the four dimesional case. Individual integration is done by
using the Bessel function as

e±2iπnqij

n

∫ ∞

0

p3e−nLEpdp = −e±2iπnqij

n2

∂

∂L

∫ ∞

1

m3(t2 − 1)e−nLmtdt.

= −e±2iπnqij

n2

23/2

√
π

∂

∂L

[( m

nL

)3/2
K3/2(nLm)

]

=
e±2iπnqij

n

23/2m√
π

( m

nL

)3/2
K5/2(nLm). (19)

Then, the potential contributions from massive fermions are obtained by
using the K5/2(x) as

Vφ
f (Nf ,mf ) =

√
2Nf (mf/L)5/2

π5/2

N∑

i=1

∞∑

n=1

K5/2(nmfL)

n5/2
cos[2πn(qi + φ)], (20)

Vφ
a (Na,ma) =

√
2Na(ma/L)5/2

π5/2

N∑

i,j=1

∞∑

n=1

(
1 − 1

N
δij

)K5/2(nmaL)

n5/2
cos[2πn(qij + φ)].

(21)
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∂
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n

23/2m√
π

( m

nL
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Then, the potential contributions from massive fermions are obtained by
using the K5/2(x) as

Vφ
f (Nf ,mf ) =

√
2Nf (mf/L)5/2

π5/2

N∑

i=1

∞∑

n=1

K5/2(nmfL)

n5/2
cos[2πn(qi + φ)], (20)

Vφ
a (Na,ma) =

√
2Na(ma/L)5/2

π5/2

N∑

i,j=1

∞∑

n=1

(
1 − 1

N
δij

)K5/2(nmaL)

n5/2
cos[2πn(qij + φ)].

(21)
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5D SU(3) with adjoint PBC

Figure 13: Contour plot of the one-loop effective potential of SU(3) gauge
theory on R4×S1 with one PBC adjoint quark (Vg +V0

a(Na = 1,ma = m))L5

for mL = 0.5 and 1.3 as a function of q1 and q2.
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Figure 14: L−1-ma phase diagram for SU(3) gauge theory on R4 × S1 with
one PBC adjoint quark based on the one-loop effective potential.
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SU(2)×U(1)

U(1)×U(1)

・Qualitatively the same as 4D, but narrower SU(2)×U(1).

・Z3 symmetric Polyakov-loop distribution is the same.
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Figure 4: L−1-m phase diagram for SU(3) gauge theory on R3 × S1 with
one PBC adjoint quark based on one-loop effective potential. D stands for
“deconfined (SU(3))”, S for “split (SU(2) × U(1))” and R for “re-confined
(U(1) × U(1))” phases. Phase transitions are first-order.

ReΦ

Im Φ

Figure 5: Schematic distribution plot of Polyakov loop Φ as a function of
Re Φ and Im Φ for SU(3) gauge theory on R3 × S1 with one PBC adjoint
quark.
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V(q1, q2) = Vg + V0
a

Z3



(Nf, Na)=(1,1)

equivalently, choice of the number of flavors. For (Nf , Na) = (1, 1) without
the parity pair, the pseudo-confined phase disappears and the split phase
becomes the unique gauge-broken phase as shown in Fig. 15. This result
is consistent with that of the massless case (ma = 0) in Ref. [9, 10]. On
the other hand, when we introduce parity pairs for (Nf , Na) = (1, 1) or
equivalently consider (Nf , Na) = (2, 2), the split phase becomes wider than
that in Fig. 14 but the pseudo-reconfined phase still survives as shown in
Fig. 16. In the five-dimensional pseudo-confined phase we again have six
minima for q1 and q2 as (q1, q2) ∼ (0, 0.4), (0.4, 0), (−0.4, 0.4), (−0.4, 0),
(0,−0.4), (0.4,−0.4), which inidicates that the minima are given by the
permutation of (q1, q2, q3) ∼ (0, 0.4,−0.4). We depict the expanded effective
potential in Fig. 17. The left panel shows the massless case (maL = 0),
which corresponds to the pseudo-reconfined phase. The right panel shows the
first-order phase transition between the pseudo-reconfined and split phases
(maL = 1.18). In the cases with (Nf , Na) = (1, 2) or (Nf , Na) = (1, 3), the
potential minima in the pseudo-reconfined phase becomes deeper and the
phase transition gets more distinct.
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Figure 15: L−1-ma phase diagram for SU(3) gauge theory on R4 × S1 with
one adjoint and one massless fundamental quarks ((Nf , Na) = (1, 1), mf = 0,
PBC) based on the one-loop effective potential.

In the end of this section we comment on the other aspect of gauge theory
with a compacted dimension. If we regard the compacted direction as time
direction, the boundary condition for the Polyakov-loop phases can be seen as
imaginary chemical potential. The periodic and anti-periodic boundary con-
ditions correspond to different Roberge-Weiss transition points on the QCD
phase diagram. From this viewpoint, it is clear that fundamental fermions
with PBC works to move the vacua to ReΦ < 0 direction as shown in Fig. 9
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(Nf, Na)=(2,2)
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Figure 16: L−1-ma phase diagram for SU(3) gauge theory on R4 × S1 with
a set of parity pairs of (Nf , Na) = (1, 1), or equivalently (Nf , Na) = (2, 2),
based on the one-loop effective potential.
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Figure 17: Expanded 5D effective potential of SU(3) gauge theory on R4×S1

with a set of parity pairs of (Nf , Na) = (1, 1) or (Nf , Na) = (2, 2) as a function
of q1 with q2 = 0. Left one shows the pseudo-confined phase (m = ma = 0),
where we have the minimum at (q1, q2) ∼ (0.4, 0). Right one shows the
first-order phase transition between the pseudo-reconfined and split phase at
maL = 1.18.
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5D SU(3) w/ adj. & fund.          

SU(3)

SU(2)×U(1)

SU(3) SU(2)×U(1)

U(1)×U(1)

・SU(2)×U(1) phase enhancement is more prominent.

・Phase structure is more sensitive to # of flavors.　

Split phase dominant ! 

V(q1, q2) = Vg + V0
a + V0

f



 Competition of adj. and gluon effective potentials

Gluon

PBC adj. 

value (VEV) while Ãµ is fluctuation from it. The VEV can be replaced by

〈Ay〉 =
2π

gL
q, (2)

where q’s color structure is diag(q1, q2, ..., qN) with q1+q2+···+qN−1+qN = 0
and each component is determined as (qi)mod 1. We note that eigenvalues of
qi are invariant under all gauge transformations preserving boundary con-
ditions. Then we can easily observe spontaneous gauge symmetry breaking
from values of qi in the vacuum. For detailed argument on gauge transforma-
tion for this topic, see [9] for example. The gluon one-loop effective potential
Vg is expressed as

Vg = − 2

L4π2

3∑

i,j=1

∞∑

n=1

(
1 − 1

3
δij

)cos[2nπqij]

n4
(3)

where qij = (qi − qj)mod 1 and N is the number of color degrees of freedom.
The contribution from massless fundamental quarks Vf is given by

Vf =
4Nf

L4π2

N∑

i=1

∞∑

n=1

cos[2πn(qi + 1/2)]

n4
, (4)

Va = +
4

L4π2

3∑

i,j=1

∞∑

n=1

(
1 − 1

3
δij

)cos[2πnqij]

n4
, (5)

where Nf is the number of fundamental flavors. Depending on boundary
conditions, we should replace qi + 1/2 by qi + φ. For example, the choice of
φ = 0 describes quarks with periodic boundary conditions. From here, we
denote Vφ

f as effective potential of the fundamental fermion with boundary
angle φ. The contribution from massive fundamental quarks is expressed by
using the second kind of the modified Bessel function K2(x) as

Vφ
f (Nf ,mf ) =

2Nfm2
f

π2L2

N∑

i=1

∞∑

n=1

K2(nmfL)

n2
cos[2πn(qi + φ)], (6)

where mf is the fundamental fermion mass. (We assume the same mass for
all flavors.) Here the second kind of the modified Bessel function Kν(x) is
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Figure 19: The contour plot of one-loop effective potential for pure SU(3)
gauge theory, VgL4 as a function of q1 and q2. Thicker region stands for
deeper region of the effective potential.

Figure 20: The contour plot of one-loop effective potential for R3×S1 SU(3)
gauge theory with one massless fundamental fermion with anti-periodic
boundary condition ((Nf , Na) = (1, 0) with aPBC) (Vg + V1/2

f )L4.
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Figure 1: The one-loop effective potential of SU(3) gauge theory on R3 ×S1

with one adjoint fermion with PBC [Vg + V0
a(Na = 1,ma = 0)]L4. (Right)

The contour plot as a function of q1 and q2. Thicker region stands for deeper
region of the potential. (Left) The effective potential as a function of q1 with
q2 = 0. The global minima are located at (q1, q2) = (±1/3, 0).

ing. We consider (Nf , Na) = (0, 1) with PBC. We note that this the-
ory has exact center symmetry, and all the phases, even the gauge-broken
phase, should reflect this symmetry. Figure 1 shows the effective potential
[Vg + V0

a ]L4. The left contour plot is obviously different from the gauge-
symmetric cases. Careful search shows that the minima are located at
(q1, q2) = (0, 1/3), (1/3, 0), (−1/3, 1/3), (−1/3, 0), (0,−1/3), (1/3,−1/3).
It means the vacua are given by permutations of (q1, q2, q3) = (0, 1/3,−1/3),
and SU(3) gauge symmetry is broken into U(1) × U(1). This is the famous
result, known as the Hosotani mechanism, where the Aharonov-Bohm effect
in the compacted dimension nontrivially breaks gauge symmetry [4, 5, 9, 10].
We note that this situation is sometimes called “re-confined phase” [29] since
the color fundamental trace of the Polyakov loop Φ ≡ TrF P becomes zero.

To study the phase diagram, we introduce nonzero quark mass. Figure 2
shows the effective potential [Vg + V0

a(Na,ma)]L4 as a function of q1 with
q2 = 0 for mL = 1.2, 1.6, 2.0 and 3.0 from left to right panels (m ≡ ma).
It is clearly seen that there is the first-order phase transition in the vicinity
of mL = 1.6. This is a transition between the re-confined phase and the
other gauge-broken phase, which we call the “split phase” [29]. The contour
plots for mL = 1.6 and mL = 1.8 are shown in Fig. 3. The mL = 1.8 case
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Can be realized by Fund. quarks with appropriate B.C. ?

Z3 unbroken

What happens in the potential ?

opposite sign !



               The answer is Yes ! 

  Flavor-dependent twisted B.C.  
                                      (FTBC)

Kouno, TM, Kashiwa, Makiyama, Sasaki, Yahiro, in preparation.



FTBC for 3 fundamental flavors in SU(3)

value (VEV) while Ãµ is fluctuation from it. The VEV can be replaced by

〈Ay〉 =
2π

gL
q, (2)

where q’s color structure is diag(q1, q2, ..., qN) with q1+q2+···+qN−1+qN = 0
and each component is determined as (qi)mod 1. We note that eigenvalues of
qi are invariant under all gauge transformations preserving boundary con-
ditions. Then we can easily observe spontaneous gauge symmetry breaking
from values of qi in the vacuum. For detailed argument on gauge transforma-
tion for this topic, see [9] for example. The gluon one-loop effective potential
Vg is expressed as

Vg = − 2

L4π2

3∑

i,j=1

∞∑

n=1

(
1 − 1

3
δij

)cos[2nπqij]

n4
(3)

where qij = (qi − qj)mod 1 and N is the number of color degrees of freedom.
The contribution from massless fundamental quarks Vf is given by

Vf =
4Nf

L4π2

N∑

i=1

∞∑

n=1

cos[2πn(qi + 1/2)]

n4
, (4)

V0
a = +

4

L4π2

3∑

i,j=1

∞∑

n=1

(
1 − 1

3
δij

)cos[2πnqij]

n4
, (5)

VFT
f = +

4

L4π2

3∑

i

3∑

f

∞∑

n=1

cos[2πnqif ]

n4
, (6)

qif = qi+(f−1)/3 where Nf is the number of fundamental flavors. Depending
on boundary conditions, we should replace qi + 1/2 by qi + φ. For example,
the choice of φ = 0 describes quarks with periodic boundary conditions.
From here, we denote Vφ

f as effective potential of the fundamental fermion
with boundary angle φ. The contribution from massive fundamental quarks
is expressed by using the second kind of the modified Bessel function K2(x)
as

Vφ
f (Nf ,mf ) =

2Nfm2
f

π2L2

N∑

i=1

∞∑

n=1

K2(nmfL)

n2
cos[2πn(qi + φ)], (7)
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Z3 center is preserved by use of Z3 of flavor SU(3).

Sakai, Kouno, 
Sasaki, Yahiro (2012)

Z3 transformation 

(q1, q2, q3)x,y+L = (q1, e
2πi/3q2, e

4πi/3q3)x,y

(e2πi/3q1, e
4πi/3q2, q3)x,y Relabeling

Text

・One-loop effective potential for FTBC

similar form to adj. case cf.)
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where Nf is the number of fundamental flavors. Depending on boundary
conditions, we should replace qi + 1/2 by qi + φ. For example, the choice of
φ = 0 describes quarks with periodic boundary conditions. From here, we
denote Vφ

f as effective potential of the fundamental fermion with boundary
angle φ. The contribution from massive fundamental quarks is expressed by
using the second kind of the modified Bessel function K2(x) as

Vφ
f (Nf ,mf ) =

2Nfm2
f

π2L2

N∑

i=1

∞∑

n=1

K2(nmfL)

n2
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where mf is the fundamental fermion mass. (We assume the same mass for
all flavors.) Here the second kind of the modified Bessel function Kν(x) is

4

cf.) Flavored chemical potential
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Fig. 7: Contour plot of VfL4 with mL = 0. Result with FTBC-PB.
q3 is given by −q1 − q2.

Fig. 8: Contour plot of VgL4. q3 is given by −q1 − q2.

two Z3 sets

(q1, q2, q3)1 =(α/9,α/9,−2α/9),
((α + 3)/9, (α + 3)/9, (3 − 2α)/9),
(−(3 − α)/9,−(3 − α)/9, (6 − 2α)/9)

(37)
(q1, q2, q3)2 = − (α/9,α/9,−2α/9),

− ((α + 3)/9, (α + 3)/9, (3 − 2α)/9),
− (−(3 − α)/9,−(3 − α)/9, (6 − 2α)/9),

(38)

where α depends on NF and mL within 0 < α ≤ 1. In
NF → ∞ limit, α reaches 1. Here we do not manifest their
permutation triplets. In this case, SU(3) gauge symmetry is
broken to SU(2)×U(1).

These two sets of vacua (37) and (38) have a relation as

(q1, q2, q3)1 = −(q1, q2, q3)2, (39)

which can be interpreted as charge conjugation invariance
(Aµ → −A∗

µ, ImΦ → −ImΦ). This charge conjugation
symmetry is also spontaneously broken in this phase. Fur-

Fig. 9: Contour plot of [Vg + Vf ]L4 with N3 = 40 FTBC fermions
, for the SU(3) deconfined phase (top) and the SU(2) × U(1) C-
broken phase (bottom).

thermore, since Φ &= 0 in this phase, Z3 symmetry is spon-
taneously broken. Distribution plot of the Polyakov loop
Φ ≡ Tre2iπqi and phase diagram are depicted in Fig. 10 and
in Fig. 11,respectively.

We comment on asymptotic-non-freedom and renormaliz-
ability in SU(3) gauge theory with large Nf . In the case with
NF > 30 (Nf > 90), the theory loses asymptotic-freedom
and is expected to become non-renormalizable. We how-
ever note that dynamical gauge symmetry breaking due to the
Hosotani mechanism can be brought about also in the asymp-
totic non-free theory as QED or five-dimensional gauge theo-
ries. This is because the mechanism is based on the Aharonov-
Bohm effect in the compactified direction. We thus consider
that our result on gauge symmetry breaking is still valid al-
though we should regard our large-flavor theory on R3×S1 as
cutoff theory. We also note that we have no consensus on how
behavior of beta function depends on the number of flavors in
compactified gauge theory with special boundary conditions
as FTBC. Intensive study should be devoted to this topic.

We consider that our argument can carry over to the
five-dimensional gauge theory, which is expected to be
asymptotic-non-free in the first place. FTBC may lead to a
new class of Gauge-Higgs unification models in five dimen-
sions.
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GSB and phase structure for FTBC

SU(3) broken only to SU(2)×U(1)  !
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q1 = q2 �= q3

phase are given by two Z3 sets

(q1, q2, q3)1 =(α/9,α/9,−2α/9),

((α + 3)/9, (α + 3)/9, (3 − 2α)/9),

(−(3 − α)/9,−(3 − α)/9, (6 − 2α)/9) (5)

(q1, q2, q3)2 = − (α/9,α/9,−2α/9),

− ((α + 3)/9, (α + 3)/9, (3 − 2α)/9),

− (−(3 − α)/9,−(3 − α)/9, (6 − 2α)/9), (6)

where α depends on NF and mL within 0 < α < 1. Here we do not manifest their
permutation triplets. These two sets have a relation as

(q1, q2, q3)1 = −(q1, q2, q3)2, (7)

which means charge conjugation invariance (Aµ → −Aµ, ImΦ → −ImΦ). This charge
conjugation symmetry is also spontaneously broken in this phase. Distribution plot of
the Polyakov loop Φ ≡ Tre2iπqi is depicted in Fig. ??.
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Figure 1: L−1-m phase diagram for SU(3) gauge theory on R3 × S1 with N3 = 40 FTBC
fermions based on one-loop effective potential. D stands for SU(3) deconfined phase
and CB for SU(2) × U(1) C-broken phase. In the C-broken phase, charge conjugation
invariance is also spontaneously broken.
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V. SUMMARY

In summary,

In Sec. IV, we investigated dynamical breaking of SU(3)
gauge symmetry in FTBC models. We found that, in the case
with large NF , SU(3) is broken to SU(2) × U(1) as with
the split phase in the adjoint-PB theory. The significant differ-
ence is that the minima in the effective potential have charge-
conjugation pairs in FTBC case as shown Fig. 10: We thus
consider the charge-conjugation invariance is also broken in
this phase. It is reasonable since FTBC can be interpreted
as a special manner of introducing imaginary chemical po-
tential so as to keep charge conjugation as well as Z3 cen-
ter. Although the large NF means asymptotic-non-freedom,
we consider our result suggests another class of Gauge-Higgs
unification models with dynamical gauge symmetry breaking.
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Summary
1. Rich phase structure with SGSB in gauge   
   theory on compactified space with PBC.  

2. Fundamental flavors with PBC works to
   enhance SU(2)×U(1) phase.

3. Fund. fermions with FTBC also leads to 
   SU(2)×U(1) SGSB. 

Fusion topic between In-medium QCD and BSM !

4. Specific chiral properties. 



Future works

・Further lattice study 4D to check our results.

・Lattice study for 5D as cutoff theory.

・Application of FTBC to BSM, QCD.... 



Elitzur’s theorem 

<A>=0   on the lattice

<P>≠0   on the lattice

・DGSB by Hosotani mechanism is topological phenomenon.

・Can be indirectly observed from Gauge-invariant quantity.



!
"

#

$ % & ' ( )$
$

*

)$

)*

%$

)!+

,

FIG. 23: Phase diagram for R3 × S1 SU(3) theory with one PBC adjoint quark based on the

effective potential with non-perturbative deformation (M = 596 MeV). C stands for “confined”, D
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FIG. 22: The contour plot of one-loop effective potential for R3 × S1 SU(3) gauge theory with

the Na = 1 adjoint fermion with anti-periodic boundary condition ((Nf , Na) = (0, 1) with aPBC)

(Vg + V1/2
a )L4.

we consider the following modification from the perturbative potential in [27, 28, 69, 70]:

Vnp
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L4π2
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i,j=1
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n=1

(
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N
δij

)cos(2nπqij)

n4
+

M2

2π2L2

N∑

i,j=1

∞∑

n=1

(
1 − 1

N
δij

)cos(2nπqij)

n2

(A1)

where M is the mass-dimension 1 parameter. We set the scale parameter as M = 596

MeV. The confined phase and the first-order phase transition show up, but it is merged into

the gauge-broken re-confined phase. We note that the SU(3) gauge symmetry is explicitly

broken in the confined (re-confined) phase.
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Orbifold and chiral fermions

orbifold B.C.

Symmetry breaking by 

Chiral fermion

S1/Z2

�
Aµ

Ay

�

x,−y

= P0

�
Aµ

−Ay

�

x,y

P †
0

�
Aµ

Ay

�

x,L−y

= P1

�
Aµ

−Ay

�

x,L+y

P †
1

ψ(x,−y) = P0γ5ψ(x, y)
ψ(x, L− y) = P1γ5ψ(x, L + y)

(P0, P1)

y0L



EW theory

SU(2)L×U(1)Y  →  U(1)EM

G     →      SU(2)×U(1)     →     U(1)

e.g.)SU(3)

P0 = P1 =




1

1
−1



 Aµ =







 Ay =









SU(2)×U(1) Higgs

Higgs: SU(2) doublet ∈ Ay

(P0, P1) θH �= 0



SO(5)×U(1) gauge-higgs unification in RS

Plank brane TeV brane

Brane fermions
Brane scalars

AdS Λ = −6k2

SO(5)×U(1)

P0 = P1 =





−1
−1

−1
−1

+1




Aµ =








Ay =





φ1

φ2

φ3

φ4





SO(5)  →  SO(4)~SU(2)×SU(2)

SO(4)×U(1)  →  SU(2)×U(1)
           →   U(1)

Brane scalars

(P0, P1)

Higgs

θH �= 0

W, Z, γ


